Homework 2 Solution

Section 2.2 and 2.3.
2.2.4. Write each of the following autonomous equations in the form $x_{n+1}=a x_{n}+b$ and identify the constants a and b.
(a) $x_{n+1}=2\left(4-x_{n}\right) / 3$.

$$
\begin{gathered}
x_{n+1}=\frac{2\left(4-x_{n}\right)}{3}=\frac{8-2 x_{n}}{3}=-\frac{2 x_{n}}{3}+\frac{8}{3}=-\frac{2}{3} x_{n}+\frac{8}{3} \\
\Rightarrow x_{n+1}=-\frac{2}{3} x_{n}+\frac{8}{3} \\
a=-\frac{2}{3}, \quad b=\frac{8}{3}
\end{gathered}
$$

(b) $3 x_{n+1}-2 x_{n}=8$.

$$
\begin{gathered}
3 x_{n+1}-2 x_{n}=8 \Rightarrow 3 x_{n+1}=2 x_{n}+8 \Rightarrow x_{n+1}=\frac{2}{3} x_{n}+\frac{8}{3} \\
a=\frac{2}{3}, \quad b=\frac{8}{3}
\end{gathered}
$$

(c) $\left(x_{n+1}+x_{n}\right) / 2=1$.

$$
\begin{gathered}
\frac{x_{n+1}+x_{n}}{2}=1 \Rightarrow x_{n+1}+x_{n}=2 \Rightarrow x_{n+1}=-x_{n}+2 \\
a=-1, \quad b=2
\end{gathered}
$$

(d) $x_{n+1} / x_{n}=0.9$.

$$
\begin{gathered}
\frac{x_{n+1}}{x_{n}}=0.9 \Rightarrow x_{n+1}=0.9 x_{n} \\
a=0.9, \quad b=0
\end{gathered}
$$

2.2.6. Write

$$
x_{1}=x_{0}, x_{2}=2 x_{1}+1, x_{3}=3 x_{2}+2, x_{4}=4 x_{3}+3, \cdots .
$$

in the form $x_{n+1}=a_{n} x_{n}+b_{n}$, and then compute and make a time-series plot of $x_{0}, x_{1}, \cdots, x_{5}$ using $x_{0}=1$.
If we use the general form $x_{n+1}=a_{n} x_{n}+b_{n}$ of a linear iterative model, then

$$
a_{0}=1, a_{1}=2, a_{2}=3, a_{3}=4, \cdots \Rightarrow a_{n}=n+1
$$

and

$$
b_{0}=0, b_{1}=1, b_{2}=2, b_{3}=3, \cdots \Rightarrow b_{n}=n .
$$

So $x_{n+1}=(n+1) x_{n}+n$.
Now

$$
\begin{gathered}
x_{1}=x_{0}=1, \\
x_{2}=2 x_{1}+1=2 \cdot 1+1=3, \\
x_{3}=3 x_{2}+2=3 \cdot 3+2=11, \\
x_{4}=4 x_{3}+3=4 \cdot 11+3=47, \\
x_{5}=5 x_{4}+4=5 \cdot 47+4=239 .
\end{gathered}
$$

The following graph is the time-series graph of x_{n}.

2.2.8. Write the following iteration

$$
x_{1}=1-\frac{x_{0}}{2}, x_{2}=1+\frac{x_{1}}{2}, x_{3}=1-\frac{x_{2}}{2}, x_{4}=1+\frac{x_{3}}{2}, \cdots .
$$

in the form $x_{n+1}=a_{n} x_{n}+b_{n}$, and then compute and make a time-series plot of $x_{0}, x_{1}, \cdots, x_{5}$ using $x_{0}=1$.

$$
\begin{gathered}
a_{0}=-\frac{1}{2}, a_{1}=\frac{1}{2}, a_{2}=-\frac{1}{2}, a_{3}=\frac{1}{2}, \cdots \Rightarrow a_{n}=\frac{(-1)^{n+1}}{2} \\
b_{0}=1, b_{1}=1, b_{2}=1, b_{3}=1, \cdots \Rightarrow b_{n}=1
\end{gathered}
$$

Therefore $x_{n+1}=\frac{(-1)^{n+1}}{2} x_{n}+1$.
So

$$
x_{1}=-\frac{1}{2} x_{0}+1=-\frac{1}{2} \cdot 1+1=\frac{1}{2},
$$

$$
\begin{gathered}
x_{2}=\frac{1}{2} x_{1}+1=\frac{1}{2} \cdot \frac{1}{2}+1=\frac{5}{4} \\
x_{3}=-\frac{1}{2} x_{2}+1=-\frac{1}{2} \cdot \frac{5}{4}+1=\frac{3}{8} \\
x_{4}=\frac{1}{2} x_{3}+1=\frac{1}{2} \cdot \frac{3}{8}+1=\frac{19}{16} \\
x_{5}=-\frac{1}{2} x_{4}+1=-\frac{1}{2} \cdot \frac{19}{16}+1=\frac{13}{32}
\end{gathered}
$$

The time-series graph is the below.

2.2.18. Construct an iterative method of computing the partial sums S_{n} and identify which N would make S_{N} equal the entire sum for

$$
\sum_{k=1}^{100} \frac{-k}{2^{k}}
$$

Let $a_{k}=\frac{-k}{2^{k}}$. We would like to compute $\sum_{k=1}^{100} a_{k}$.
Note that S_{n}, the partial sum is the sum of first n terms. Thus $S_{0}=0$ and

$$
S_{n+1}=S_{n}+a_{n+1}=S_{n}+\frac{-(n+1)}{2^{n+1}}=S_{n}+\frac{-n-1}{2^{n+1}} .
$$

And $\sum_{k=1}^{100} \frac{-k}{2^{k}}=S_{100}$.
2.2.20. Construct an iterative method of computing the partial sums S_{n} and identify which N would make S_{N} equal the entire sum for

$$
1+4+9+16+25+\cdots+10,000
$$

Note that this is a sum of squares, that is,

$$
1^{2}+2^{2}+3^{2}+4^{2}+5^{2}+\cdots+100^{2}
$$

If we define $a_{k}=k^{2}$, then the sum we want to find is

$$
\sum_{k=1}^{100} a_{k}=\sum_{k=1}^{100} k^{2} .
$$

Let $S_{0}=0$ and

$$
S_{n+1}=S_{n}+a_{n+1}=S_{n}+(n+1)^{2} .
$$

The 100th term $S_{100}=\sum_{k=1}^{100} k^{2}$ is what we want to find.
2.2.24. Suppose someone borrows $\$ 10,000$ at an annual interest rate of 6% compounded monthly and makes monthly payments on the loan. Construct an iterative model for the monthly unpaid balance if the monthly payments are:
(a) $\$ 1, \$ 2, \$ 4, \$ 8, \$ 16, \cdots$.

The monthly interest rate i is $0.06 / 12=0.005$. Then from the Loan Payment Model, if we denote the remaining balance after n-th month as P_{n},

$$
\begin{aligned}
& P_{1}=(1+i) P_{0}-1=1.005 P_{0}-1, \\
& P_{2}=(1+i) P_{1}-2=1.005 P_{1}-2, \\
& P_{3}=(1+i) P_{2}-4=1.005 P_{2}-4, \\
& P_{4}=(1+i) P_{3}-8=1.005 P_{3}-8,
\end{aligned}
$$

etc. If we denote the general iterative equation as $P_{n+1}=1.005 P_{n}-d_{n}$, then $d_{0}=1, d_{1}=2, d_{2}=4=2^{2}, d_{3}=8=2^{3}, \cdots$. Therefore $d_{n}=2^{n}$ and

$$
P_{n+1}=1.005 P_{n}-2^{n}, \quad P_{0}=10000 .
$$

(b) $\$ 100, \$ 200, \$ 100, \$ 200, \$ 100, \cdots$.

By using the same idea, if we denote the general iteration as $P_{n+1}=1.005 P_{n}-$ d_{n}, then $d_{0}=100, d_{1}=200, d_{3}=100, d_{4}=200, \cdots$. We are able to describe d_{n} as

$$
d_{n}=150+(-1)^{n+1} 50 .
$$

Then $P_{n+1}=1.005 P_{n}-\left(150+(-1)^{n+1} 50\right)=1.005 P_{n}-150-(-1)^{n+1} 50$.
Thus

$$
P_{n+1}=1.005 P_{n}-150-(-1)^{n+1} 50, \quad P_{0}=10000
$$

is the model describing the remaining balance.
2.3.6. If $P_{0}=1$, construct an iterative equation for computing the partial products P_{n}, identify which N would make P_{N} equal the entire product, and compute P_{1}, \cdots, P_{5} for

$$
\left(1-\frac{1}{2}\right) \cdot\left(1+\frac{2}{4}\right) \cdot\left(1-\frac{3}{8}\right) \cdot\left(1+\frac{4}{16}\right) \cdots \cdot\left(1+\frac{20}{2^{20}}\right) .
$$

If we define a sequence

$$
a_{1}=1-\frac{1}{2}, a_{2}=1+\frac{2}{4}, a_{3}=1-\frac{3}{8}, \cdots,
$$

then a formula for the n-th term is

$$
a_{n}=1+(-1)^{n} \frac{n}{2^{n}} .
$$

Then

$$
P_{n}=\prod_{k=1}^{n} a_{n}=\prod_{k=1}^{n}\left(1+(-1)^{n} \frac{n}{2^{n}}\right)
$$

the product of the first n-term has the iteration

$$
P_{n+1}=a_{n+1} P_{n}=\left(1+(-1)^{n+1} \frac{n+1}{2^{n+1}}\right) P_{n}
$$

with $P_{0}=1$. Also P_{20} is the product we want to compute.
Finally,

$$
\begin{gathered}
P_{1}=\left(1-\frac{1}{2}\right) P_{0}=\frac{1}{2}, \\
P_{2}=\left(1+\frac{2}{4}\right) P_{1}=\frac{6}{4} \cdot \frac{1}{2}=\frac{3}{4}, \\
P_{3}=\left(1-\frac{3}{8}\right) P_{2}=\frac{5}{8} \cdot \frac{3}{4}=\frac{15}{32}, \\
P_{4}=\left(1+\frac{4}{16}\right) P_{3}=\frac{5}{4} \cdot \frac{15}{32}=\frac{75}{128}, \\
P_{5}=\left(1-\frac{5}{32}\right) P_{4}=\frac{27}{32} \cdot \frac{75}{128}=\frac{2025}{4096} .
\end{gathered}
$$

2.3.8. For

$$
x_{n+1}=\sqrt{\frac{n+2}{n+1}} x_{n}
$$

the solution x_{n} with $x_{0}=1$ is a product that telescopes to a relatively simple expression. Find that expression.

For a homogeneous equation $x_{n+1}=a_{n} x_{n}$, the closed formula is

$$
x_{n}=x_{0} \prod_{k=0}^{n-1} a_{k}
$$

So

$$
\begin{aligned}
x_{n} & =\prod_{k=1}^{n} \sqrt{\frac{k+1}{k}}=\sqrt{\frac{2}{1}} \cdot \sqrt{\frac{3}{2}} \cdot \sqrt{\frac{4}{3}} \cdots \cdots \sqrt{\frac{n+1}{n}} \\
& =\sqrt{\frac{2}{1} \cdot \frac{3}{2} \cdot \frac{4}{3} \cdots \cdots \frac{n+1}{n}}=\sqrt{\frac{n+1}{1}}=\sqrt{n+1}
\end{aligned}
$$

2.3.12. Find a formula for the exact solution x_{n} for

$$
x_{n+1}=2 x_{n} / 3, \quad x_{0}=5 .
$$

Because $x_{n+1}=\frac{2}{3} x_{n}$ with $x_{0}=5$,

$$
x_{n}=x_{0}\left(\frac{2}{3}\right)^{n}=5 \cdot\left(\frac{2}{3}\right)^{n} .
$$

2.3.18. Suppose that an investment of $\$ 1000$ grows to $\$ 1500$ in 2 years getting interest that is compounded monthly.
(a) What is the interest rate?

Suppose that r is the annual interest rate. Then $i=r / 12$, because it is compounded monthly. The total value follows the compound interest model $P_{n+1}=(1+i) P_{n}$, which is an autonomous homogeneous equation.
From the condition given in the problem, after 24 months (= 2 years), $P_{0}=$ 1000 becomes 1500 . So

$$
1500=P_{24}=P_{0}(1+i)^{24}=1000(1+i)^{24}
$$

Thus

$$
\begin{gathered}
(1+i)^{24}=\frac{1500}{1000}=1.5 \\
1+i=(1.5)^{\frac{1}{24}} \Rightarrow i=(1.5)^{\frac{1}{24}}-1 \approx 0.017 \\
r=12 i=12 \cdot 0.017 \approx 0.204
\end{gathered}
$$

Therefore the annual interest rate is approximately 20.4%.
(b) How much interest (in dollars) does the investment earn during the first year?
The total interest in the first year can be computed by $P_{12}-P_{0}$.

$$
P_{12}-P_{0}=P_{0}(1+i)^{12}-P_{0}=1000 \cdot(1.017)^{12}-1000 \approx 224.20
$$

So the total interest is approximately $\$ 224.20$.
2.3.22. Suppose that when a certain radioactive substance decays, its mass M_{n} on day n satisfies $M_{n+1}=a M_{n}$. Assuming its mass is measured to be 250 grams initially and 100 grams on day 7 :
(a) Find the formula for the mass M_{n}.

The iterative equation is autonomous homogeneous. So we know that $M_{n}=$ $M_{0} a^{n}$. Also from the assumption, $M_{0}=250$ and $M_{7}=100$. So

$$
100=M_{7}=M_{0} a^{7}=250 a^{7} \Rightarrow a^{7}=\frac{100}{250}=\frac{2}{5} \Rightarrow a=\left(\frac{2}{5}\right)^{\frac{1}{7}} .
$$

Therefore

$$
M_{n}=250 \cdot a^{n}=250\left(\left(\frac{2}{5}\right)^{\frac{1}{7}}\right)^{n}=250\left(\frac{2}{5}\right)^{\frac{n}{7}} .
$$

(b) What is the approximate half-life of the substance, i.e., the time its takes to lose half its mass?
We want to find n such that $M_{n}=M_{0} / 2$.

$$
\begin{aligned}
M_{n}=\frac{M_{0}}{2} \Rightarrow 250\left(\frac{2}{5}\right)^{\frac{n}{7}} & =\frac{250}{2} \Rightarrow\left(\frac{2}{5}\right)^{\frac{n}{7}}=\frac{1}{2} \Rightarrow \frac{n}{7} \log \left(\frac{2}{5}\right)=\log \left(\frac{1}{2}\right) \\
& \Rightarrow n=7 \frac{\log \left(\frac{1}{2}\right)}{\log \left(\frac{2}{5}\right)} \approx 5.295
\end{aligned}
$$

So approximately it takes 5.3 days (the answer ' 5 days' is also ok).
2.3.24. Suppose that when a certain pendulum is set in motion, it swings in such a way that the greatest positive (or negative) angle it makes on one side of the vertical is always 95% of the greatest negative (or positive) angle it previously made on the other side of the vertical, which always occurs 3 seconds earlier. If the initial angle it makes with the vertical when let go is 20° :
(a) How many times will the pendulum cross the vertical before the magnitude of the angle it achieves is 1° or less?
Suppose that A_{n} is the angle from the vertical axis. Then from the assumption, $A_{n+1}=-0.95 A_{n}$. Note that in each step, the sign does change because the pendulum moves to the opposite side. Then $A_{n}=A_{0}(-0.95)^{n}=$ $20(-0.95)^{n}$.
We want to find the smallest n such that $\left|A_{n}\right| \leq 1$, because we are interested in the magnitude of the angle, not its direction.

$$
\begin{gathered}
\left|A_{n}\right|=\left|20(-0.95)^{n}\right|=20(0.95)^{n} \\
\left|A_{n}\right| \leq 1 \Rightarrow 20(0.95)^{n} \leq 1 \Rightarrow 0.95^{n} \leq \frac{1}{20}
\end{gathered}
$$

$$
\Rightarrow n \log 0.95 \leq \log \left(\frac{1}{20}\right) \Rightarrow n \geq \frac{\log \left(\frac{1}{20}\right)}{\log 0.95} \approx 58.4
$$

(Note that at the last step, the direction of the inequality does change because $\log 0.95$ is a negative number.)
Because n is an integer, the smallest n with the property is 59 .
(b) Approximately how long will it take for this to happen?

Although the swing distance decreases, a swing always takes 3 seconds. So the answer is $59 \times 3=177$ seconds.

