Homework 3 Solution

Section 2.4.

2.4.4. For the geometric series

$$
1-0.2+0.04-0.008+0.0016-\cdots-(0.2)^{15}
$$

identify a and n, and determine the sum S.

$$
\begin{gathered}
1-0.2+0.04-0.008+0.0016-\cdots-(0.2)^{15} \\
=1+(-0.2)+(-0.2)^{2}+(-0.2)^{3}+(-0.2)^{4}+\cdots+(-0.2)^{15}
\end{gathered}
$$

So $a=-0.2$ and $n=15$.

$$
S=\frac{a^{n+1}-1}{a-1}=\frac{(-0.2)^{16}-1}{(-0.2)-1}=\frac{1-(-0.2)^{16}}{1+0.2}=\frac{1-(0.2)^{16}}{1.2}
$$

2.4.8. Evaluate

$$
-3+\frac{3}{1.1}-\frac{3}{1.21}+\frac{3}{1.331}-\frac{3}{1.4641}+\cdots
$$

or say if it diverges.

$$
\begin{gathered}
-3+\frac{3}{1.1}-\frac{3}{1.21}+\frac{3}{1.331}-\frac{3}{1.4641}+\cdots \\
=-3\left(1-\frac{1}{1.1}+\frac{1}{1.21}-\frac{1}{1.331}+\frac{1}{1.4641}-\cdots\right) \\
=-3\left(1+\left(-\frac{1}{1.1}\right)+\left(-\frac{1}{1.1}\right)^{2}+\left(-\frac{1}{1.1}\right)^{3}+\left(-\frac{1}{1.1}\right)^{4}+\cdots\right) \\
=-3\left(\frac{1}{1-\left(-\frac{1}{1.1}\right)}\right)=-3\left(\frac{1}{1.2}\right)=-3\left(\frac{1.1}{1.2}\right)=-\frac{3.3}{1.2}
\end{gathered}
$$

2.4.12. Find a formula for the exact solution x_{n} for the given x_{0}.

$$
x_{n+1}=\frac{x_{n}}{4}+5, \quad x_{0}=3
$$

Because it is an autonomous equation with $a=\frac{1}{4}$ and $b=5$,

$$
\begin{gathered}
x_{n}=a^{n} x_{0}+b \frac{a^{n}-1}{a-1}=\left(\frac{1}{4}\right)^{n} 3+5 \frac{\left(\frac{1}{4}\right)^{n}-1}{\left(\frac{1}{4}\right)-1} \\
=\frac{3}{4^{n}}+5 \frac{1-\left(\frac{1}{4}\right)^{n}}{1-\left(\frac{1}{4}\right)}=\frac{3}{4^{n}}+5 \frac{\frac{4^{n}-1}{4^{n}}}{\frac{3}{4}}=\frac{3}{4^{n}}+\frac{20\left(4^{n}-1\right)}{3 \cdot 4^{n}}
\end{gathered}
$$

2.4.16. Suppose that each month $\$ 200$ is deposited into a savings account with an original balance of $\$ 1500$, that pays 4% annual interest compounded monthly.
(a) What will the account balance be 2 years later?

By Annuity Savings Model, the total balance after n months can be described as $P_{n+1}=(1+i) P_{n}+d$. From the assumption, $i=\frac{0.04}{12}=\frac{0.01}{3}=\frac{1}{300}$, $P_{0}=1500$, and $d=200$. We want to find P_{24}.

$$
\begin{aligned}
P_{24} & =(1+i)^{24} P_{0}+d \frac{(1+i)^{24}-1}{i} \\
& =\left(1+\frac{1}{300}\right)^{24} 1500+200 \frac{\left(1+\frac{1}{300}\right)^{24}-1}{\frac{1}{300}} \\
& =1500\left(\frac{301}{300}\right)^{24}+60000\left(\left(\frac{301}{300}\right)^{24}-1\right) \approx 6613.29
\end{aligned}
$$

Therefore the balance is $\$ 6613.29$.
(b) How much interest will the account earn during that time?

The total interest is the difference between the total balance of the account and the money we have put.

$$
P_{24}-\left(P_{0}+24 \cdot 200\right)=6613.29-(1500+4800)=313.29
$$

So the total interest is $\$ 313.29$.
2.4.18. Suppose someone borrows $\$ 10,000$ at an annual interest rate of 9% to be paid back monthly.
(a) If $\$ 150$ is paid each month, what will the unpaid balance be after 3 years?

By Loan Payment Model, the remaining balance follows

$$
P_{n+1}=(1+i) P_{n}-d .
$$

In our situation, $P_{0}=10000, d=150$, and $i=\frac{0.09}{12}=\frac{3}{400}$. We want to find P_{36}.

$$
\begin{aligned}
& P_{36}=\left(1+\frac{3}{400}\right)^{36} 10000-150 \frac{\left(1+\frac{3}{400}\right)^{36}-1}{\frac{3}{400}} \\
= & 10000\left(\frac{403}{400}\right)^{36}-20000\left(\left(\frac{403}{400}\right)^{36}-1\right) \approx 6913.55
\end{aligned}
$$

So the remaining balance is $\$ 6913.55$.
(b) How much interest is paid during this time?

The actual amount we've paid back is $150 \cdot 36=5400$. This has been used to pay some interest and the balance. The amount we've used to reduce the balance is $P_{0}-P_{36}=10000-6913.55=3086.45$. Therefore the interest we paid is $5400-3086.45=\$ 2313.55$.
2.4.20. Suppose that a population is presently 150,000 and is growing by 2% per generation. Immigration has also been occurring at a constant rate of 2500 per generation.
(a) What will the population equal five generations from now?

The population follows the following immigration model $P_{n+1}=r P_{n}+k$, with $r=1.02, k=2500$, and $P_{0}=150000$.

$$
P_{5}=(1.02)^{5} 150000+2500 \frac{(1.02)^{5}-1}{1.02-1} \approx 178622
$$

(b) What must have been the population fiver generation ago?

We may interpret this question as the following two ways: 1) The immigration model $P_{n+1}=r P_{n}+k$ can be applied to negative n and find P_{-5}. 2) Set $P_{5}=150000$ and find P_{0}.
I will follow the second idea. Then

$$
\begin{gathered}
150000=P_{5}=(1.02)^{5} P_{0}+25000 \frac{(1.02)^{5}-1}{1.02-1} \\
P_{0}=\frac{150000-25000 \frac{(1.02)^{5}-1}{1.02-1}}{(1.02)^{5}} \approx 124076
\end{gathered}
$$

