Homework 7 Solution

Section 3.2.

3.2.10. For the equation $x_{n+1}=b x_{n}^{a}$ where a and b are positive constants:
(a) Compute x_{1}, \cdots, x_{5}, in terms of x_{0}.

$$
\begin{gathered}
x_{1}=b x_{0}^{a} \\
x_{2}=b x_{1}^{a}=b\left(b x_{0}^{a}\right)^{a}=b \cdot b^{a}\left(x_{0}^{a}\right)^{a}=b^{1+a} x_{0}^{a^{2}} \\
x_{3}=b x_{2}^{a}=b\left(b^{1+a} x_{0}^{a^{2}}\right)^{a}=b \cdot b^{(1+a) a} x_{0}^{a^{2} \cdot a}=b^{1+a+a^{2}} x_{0}^{a^{3}} \\
x_{4}=b x_{3}^{a}=b\left(b^{1+a+a^{2}} x_{0}^{a^{3}}\right)^{a}=b \cdot b^{\left(1+a+a^{2}\right) a} x_{0}^{a^{3} \cdot a}=b^{1+a+a^{2}+a^{3}} x_{0}^{a^{4}} \\
x_{5}=b x_{4}^{a}=b\left(b^{1+a+a^{2}+a^{3}} x_{0}^{a^{4}}\right)^{a}=b \cdot b^{\left(1+a+a^{2}+a^{3}\right) a} x_{0}^{a^{4} \cdot a}=b^{1+a+a^{2}+a^{3}+a^{4}} x_{0}^{a^{5}}
\end{gathered}
$$

(b) Can you construct a formula for the exact solution x_{n} for all n ? From the observation above, we can conclude that

$$
x_{n}=b^{1+a+a^{2}+\cdots+a^{n-1}} x_{0}^{a^{n}} .
$$

(c) Use the geometric series to simplify your solution in part (b).

$$
x_{n}=b^{1+a+a^{2}+\cdots+a^{n-1}} x_{0}^{a^{n}}=b^{\sum_{i=0}^{n-1} a^{i}} x_{0}^{a^{n}}
$$

3.2.12. The formula for the exact solution of $x_{n+1}=\left(x_{n}-c\right)^{a}+c$, where c is a constant, can be derived as follows:
(a) Use the substitution $u_{n}=x_{n}-c$ to convert $x_{n+1}=\left(x_{n}-c\right)^{a}+c$ into $u_{n+1}=$ u_{n}^{a}.

$$
x_{n+1}=\left(x_{n}-c\right)^{a}+c=u_{n}^{a}+c \Rightarrow u_{n+1}=x_{n+1}-c=u_{n}^{a}
$$

(b) Write the solution for u_{n} for all n.

$$
u_{n}=u_{0}^{a^{n}}
$$

(c) Use the substitution $u_{n}=x_{n}-c$ again to find a formula for x_{n} for all n.

$$
x_{n}-c=\left(x_{0}-c\right)^{a^{n}} \Rightarrow x_{n}=\left(x_{0}-c\right)^{a^{n}}+c
$$

3.2.14. Find all fixed points (if any) of $f(x)=4 x^{5}$.

$$
\begin{gathered}
4 x^{5}=x \Rightarrow 4 x^{5}-x=0 \Rightarrow x\left(4 x^{4}-1\right)=0 \Rightarrow x\left(\left(2 x^{2)^{2}}-1\right)=0\right. \\
\Rightarrow x\left(2 x^{2}-1\right)\left(2 x^{2}+1\right)=0 \Rightarrow x=0,2 x^{2}=1 \\
\Rightarrow x=0, \pm \frac{1}{\sqrt{2}}
\end{gathered}
$$

3.2.18. Find all fixed points (if any) of $P_{n+1}=4 P_{n} e^{-P_{n}}$.

$$
\begin{gathered}
f(x)=4 x e^{-x} \\
f(x)=x \Rightarrow 4 x e^{-x}=x \Rightarrow 4 x e^{-x}-x=0 \\
\Rightarrow x\left(4 e^{-x}-1\right)=0 \Rightarrow x=0,4 e^{-x}=1 \\
4 e^{-x}=1 \Rightarrow e^{x}=4 \Rightarrow x=\ln 4 \\
x=0, \ln 4
\end{gathered}
$$

3.2.22. A fixed point of $f(x)$ may be viewed as a point where the graphs of $y=f(x)$ and $y=x$ intersect. Determine graphically whether $f(x)=e^{x}+2$ have fixed points and how many.

There is no intersection point of two graphs. So there is no fixed point.
3.2.26. Find all fixed points of $x_{n+1}=x_{n}^{1 / 3}$ and determine their stability using the formula for the exact solution $x_{n}=x_{0}^{a^{n}}$. Find the basins of attraction for those that are stable.

$$
\begin{gathered}
x=x^{\frac{1}{3}} \Rightarrow x^{3}=x \rightarrow \\
x^{3}-x=0 \Rightarrow x(x-1)(x+1)=0 \\
\Rightarrow x=0,-1,1
\end{gathered}
$$

Thus there are three fixed points.
The graph of $y=x^{1 / 3}$ and $y=x$ are:

From the graph, we can observe that if $0<x_{n}<1$, then $x_{n+1}=x_{n}^{1 / 3}$ is between 0 and 1 and $x_{n+1}>x_{n}$. In particular, for any x_{0} with $0<x_{0}<1,\left|x_{0}-0\right|=x_{0}<$ $x_{1}=\left|x_{1}-0\right|$ and 0 is unstable. By the same reason,

$$
\left|x_{n+1}-1\right|=1-x_{n+1}<1-x_{n}=\left|x_{n}-1\right| .
$$

On the other hand, if $x_{n}>1$, then $x_{n+1}=x_{n}^{1 / 3}<x_{n}$ and $x_{n+1}>1$. Then we have

$$
\left|x_{n+1}-1\right|=x_{n+1}-1<x_{n}-1=\left|x_{n}-1\right| .
$$

Finally,

$$
\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} x_{0}^{\left(\frac{1}{3}\right)^{n}}=x_{0}^{\lim _{n \rightarrow \infty}\left(\frac{1}{3}\right)^{n}}=x_{0}^{0}=1 .
$$

Therefore 1 is locally stable, and its basin of attraction is $(0, \infty)$.
By a similar argument, one can show that -1 is also a locally stable point with a basin of attraction $(-\infty, 0)$.

