Homework 8 Solution

Section 3.3.

3.3.4. For $f(x)=2 x / 3$, draw the first few steps of a cobweb graph starting at $x_{0}=9$.

3.3.10. Find all fixed points of $I_{n+1}=2 I_{n}-I_{n}^{2}$ and use cobwebbing to determine their stability and any oscillation around them.
Let $f(x)=2 x-x^{2}$.

$$
\begin{gathered}
f(x)=x \Rightarrow 2 x-x^{2}=x \Rightarrow x^{2}-x=0 \Rightarrow x(x-1)=0 \\
\Rightarrow x=0, x=1
\end{gathered}
$$

The cobweb graph shows that 0 is a repeller and 1 is a attractor. So 0 is unstable and 1 is stable. Also it shows that there is no oscillation.
3.3.12. Find all fixed points of $x_{n+1}=0.25 \sin x_{n}$ and use cobwebbing to determine their stability and any oscillation around them.

Note that $x=0$ is a fixed point of $f(x)=0.25 \sin x$. We claim that it is a unique fixed point. If we define $g(x)=0.25 \sin x-x$, then $g(0)=0$. Moreover, $g^{\prime}(x)=$ $0.25 \cos x-1<0.25-1<0$, so it is a strictly decreasing function. Therefore 0 is the only zero of $g(x)$, and equivalently, 0 is the only fixed point of $f(x)$.

From the cobweb graph, we can conclude that 0 is stable and there is no oscillation.
3.3.14. Use the derivative to determine the stability of and any oscillation around the given fixed point $p=1$ for

$$
\begin{gathered}
f(x)=\left(x^{2}-3 x+5\right) / 3 . \\
f^{\prime}(x)=(2 x-3) / 3=\frac{2}{3} x-1 \\
f^{\prime}(1)=-\frac{1}{3}
\end{gathered}
$$

Because $\left|f^{\prime}(1)\right|=1 / 3<1,1$ is a stable fixed point. Also $f^{\prime}(1)<1$, so there is an oscillation around it.
3.3.20. Find all fixed points of

$$
x_{n+1}=x_{n}^{1 / 4}, x_{0}>0
$$

and use the derivative to determine their stability and any oscillation around them.

$$
\begin{gathered}
f(x)=x^{1 / 4} \\
f(x)=x \Rightarrow x^{1 / 4}=x \Rightarrow x^{4}=x \\
\Rightarrow x\left(x^{3}-1\right)=0 \Rightarrow x(x-1)\left(x^{2}+x+1\right)=0 \Rightarrow x=0, x=1
\end{gathered}
$$

But because $x_{0}>0$, we should exclude $x=0$.

$$
\begin{gathered}
f^{\prime}(x)=\frac{1}{4} x^{-\frac{3}{4}} \\
f^{\prime}(1)=\frac{1}{4} \Rightarrow\left|f^{\prime}(1)\right|=\frac{1}{4}<1
\end{gathered}
$$

So 1 is a stable fixed point. Because the derivative is positive, there is no oscillation around them.
3.3.22. Find all non-negative fixed points of $P_{n+1}=r P_{n} e^{-P_{n} / 1000}$ and use the derivative to determine their stability.

$$
\begin{gathered}
f(x)=r x e^{-x / 1000} \\
f(x)=x \Rightarrow r x e^{-x / 1000}=x \Rightarrow x\left(r e^{-x / 1000}-1\right)=0 \\
\Rightarrow e^{-x / 1000}=1 / r \Rightarrow-x / 1000=\ln 1 / r=-\ln r \Rightarrow x=1000 \ln r
\end{gathered}
$$

(a) $r=0.5$

The nonzero fixed point is $1000 \ln r=1000 \ln 0.5 \approx-693.147$. So there is no positive fixed point.
(b) $r=5$

The nonnegative fixed point is $1000 \ln r=1000 \ln 5 \approx 1609.438$.

$$
\begin{gathered}
f^{\prime}(x)=5 e^{-x / 1000}-\frac{5}{1000} x e^{-x / 1000}=5\left(1-\frac{x}{1000}\right) e^{-x / 1000} \\
f^{\prime}(1000 \ln 5)=5(1-\ln 5) e^{-\ln 5} \approx-0.609
\end{gathered}
$$

Because $\mid f^{\prime}(1000 \ln 5)=0.609<1$, it is stable.

