Homework 9 Solution

Section $3.5 \sim 3.7$.
3.5.8. Find all solutions of $f(f(x))=x$ for $f(x)=-x^{3} / 2$ and determine which are fixed points of $f(x)$ and which are 2-cycles.

$$
\begin{gathered}
f(f(x))=f\left(-\frac{x^{3}}{2}\right)=-\frac{\left(-\frac{x^{3}}{2}\right)^{3}}{2}=\frac{x^{9}}{16} \\
f(f(x))=x \Rightarrow \frac{x^{9}}{16}-x=0 \Rightarrow x^{9}-16 x=0 \\
\Rightarrow x\left(x^{8}-16\right)=0 \Rightarrow x\left(x^{4}-4\right)\left(x^{4}+4\right)=0 \Rightarrow x\left(x^{2}-2\right)\left(x^{2}+2\right)\left(x^{4}+4\right)=0 \\
\Rightarrow x(x-\sqrt{2})(x+\sqrt{2})\left(x^{2}+2\right)\left(x^{4}+4\right)=0 \Rightarrow x=0, \sqrt{2},-\sqrt{2} \\
f(0)=0, f(\sqrt{2})=-\sqrt{2}, f(-\sqrt{2})=\sqrt{2}
\end{gathered}
$$

Therefore 0 is a fixed point of $f(x)$, and $\{\sqrt{2},-\sqrt{2}\}$ is a 2 -cycle.
3.5.10. Find all fixed points of $f(x)=-x^{2}+2 x+2$ and then use them to help find all points of period 2.

$$
\begin{gathered}
f(x)=x \Rightarrow-x^{2}+2 x+2=x \Rightarrow x^{2}-x-2=0 \\
\Rightarrow x=\frac{1 \pm \sqrt{9}}{2} \\
f(f(x))=f\left(-x^{2}+2 x+2\right)=-\left(-x^{2}+2 x+2\right)^{2}+2\left(-x^{2}+2 x+2\right)+2 \\
=-x^{4}+4 x^{3}-2 x^{2}-4 x+2 \\
f(f(x))=x \Rightarrow-x^{4}+4 x^{3}-2 x^{2}-4 x+2=x \Rightarrow x^{4}-4 x^{3}+2 x^{2}+5 x-2=0
\end{gathered}
$$

Then $x^{2}-x-2$ is a factor of $x^{4}-4 x^{3}+2 x^{2}+5 x-2$, and

$$
\begin{gathered}
x^{4}-4 x^{3}+2 x^{2}+5 x-2=\left(x^{2}-x-2\right)\left(x^{2}-3 x+1\right) \\
x^{2}-3 x+1=0 \Rightarrow x=\frac{3 \pm \sqrt{5}}{2}
\end{gathered}
$$

One can check that $f\left(\frac{3+\sqrt{5}}{2}\right)=\frac{3-\sqrt{5}}{2}$ and $f\left(\frac{3-\sqrt{5}}{2}\right)=\frac{3+\sqrt{5}}{2}$. Therefore

$$
\left\{\frac{3+\sqrt{5}}{2}, \frac{3-\sqrt{5}}{2}\right\}
$$

is a 2-cycle.
3.5.18. Given that $a=1$ is one point of a 2-cycle of $f(x)=2-2^{x}$, find the other point b and determine the stability of the cycle.

$$
f(1)=2-2^{1}=0, f(0)=2-2^{0}=1
$$

So $b=1$.
3.5.22. The equation $P_{n+1}=\frac{1}{P_{n}}+\frac{P_{n}}{2}-1$ is a price model.
(a) Find the two equilibrium points and determine their stability.

$$
\begin{gathered}
f(x)=\frac{1}{x}+\frac{x}{2}-1 \\
x=f(x) \Rightarrow x=\frac{1}{x}+\frac{x}{2}-1 \Rightarrow \frac{x}{2}-\frac{1}{x}+1=0 \Rightarrow x^{2}+2 x-2=0 \\
\Rightarrow x=\frac{-2 \pm \sqrt{12}}{2}=-1 \pm \sqrt{3} \\
f^{\prime}(x)=-\frac{1}{x^{2}}+\frac{1}{2} \\
f^{\prime}(-1+\sqrt{3})=-\frac{1}{(-1+\sqrt{3})^{2}}+\frac{1}{2} \approx-1.3660<-1
\end{gathered}
$$

So $-1+\sqrt{3}$ is an unstable equilibrium point.

$$
\left|f^{\prime}(-1-\sqrt{3})\right|=\left|-\frac{1}{(-1-\sqrt{3})^{2}}+\frac{1}{2}\right| \approx 0.3660<1
$$

Therefore $-1-\sqrt{3}$ is a stable fixed point.
(b) Use the results from part (a) to help find the points of the 2-cycle, and then determine the stability of that cycle.

$$
\begin{gathered}
f(x)=\frac{1}{x}+\frac{x}{2}-1=\frac{x^{2}-2 x+2}{2 x} \\
f(f(x))=f\left(\frac{x^{2}-2 x+2}{2 x}\right)=\frac{2 x}{x^{2}-2 x+2}+\frac{x^{2}-2 x+2}{4 x}-1 \\
=\frac{x^{4}-8 x^{3}+24 x^{2}-16 x+4}{4 x^{3}-8 x^{2}+8 x} \\
f(f(x))=x \Rightarrow \frac{x^{4}-8 x^{3}+24 x^{2}-16 x+4}{4 x^{3}-8 x^{2}+8 x}=x \\
\Rightarrow x^{4}-8 x^{3}+24 x^{2}-16 x+4=4 x^{4}-8 x^{3}+8 x^{2} \Rightarrow 3 x^{4}-16 x^{2}+16 x-4=0
\end{gathered}
$$

Note that $x^{2}+2 x-2$ is a factor of $3 x^{4}-16 x^{2}+16 x-4$. Indeed,

$$
3 x^{4}-16 x^{2}+16 x-4=\left(x^{2}+2 x-2\right)\left(3 x^{2}-6 x+2\right) .
$$

$$
\begin{gathered}
3 x^{2}-6 x+2=0 \Rightarrow x=\frac{6 \pm \sqrt{12}}{6}=\frac{3 \pm \sqrt{3}}{3} \\
\left|f^{\prime}\left(\frac{3+\sqrt{3}}{3}\right) f^{\prime}\left(\frac{3-\sqrt{3}}{3}\right)\right|=0.5<1
\end{gathered}
$$

Therefore the 2-cycle

$$
\left\{\frac{3+\sqrt{3}}{3}, \frac{3-\sqrt{3}}{3}\right\}
$$

is stable.
3.5.30. (a) Suppose $f^{4}(p)=p$ for some point p and some function $f(x)$. What are the possible periods that p might have?
Because the period is the smallest m so that $f^{m}(p)=p$, the period of p is at most 4. But 3 is impossible, because if $f^{3}(p)=p$, then $p=f^{4}(p)=$ $f\left(f^{3}(p)\right)=f(p)$ and p is a fixed point (so the period is 1). Therefore the possible periods are 1,2 , and 4.
(b) Suppose $f^{12}(p)=p$ for some point p and some function $f(x)$. What are the possible periods that p might have?
By the same reason, the period of p is at most 12 . We claim that the period of p must be a divisor of 12 , so $1,2,3,4,6$, and 12 are the only possible cases. Indeed, if the period m of p is less than 12 , then $f^{m}(p)=p$. If we divide 12 by m, then $12=q m+r$ for some $q \geq 1$ and the remainder $m>r \geq 0$. Now $p=f^{12}(p)=f^{r}\left(f^{q m}(p)\right)=f^{r}(p)$, so the period of p is at most r unless $r=0$. The first case is impossible because the period m is larger then r. Therefore $r=0$ and m is a divisor of 12 .
3.5.32. For $f(x)=1-4|x|, p_{1}=-11 / 65$ is a point of an m-cycle. Find all other points of that cycle, and determine its period and stability.

$$
\begin{gathered}
f\left(-\frac{11}{65}\right)=1-4\left|-\frac{11}{65}\right|=\frac{21}{65} \\
f\left(\frac{21}{65}\right)=1-4\left|\frac{21}{65}\right|=-\frac{19}{65} \\
f\left(-\frac{19}{65}\right)=1-4\left|\frac{19}{65}\right|=-\frac{11}{65}
\end{gathered}
$$

Therefore $p=-11 / 65$ has period 3 . Note that

$$
f(x)= \begin{cases}1-4 x, & x>0 \\ 1+4 x, & x<0\end{cases}
$$

So

$$
f^{\prime}(x)= \begin{cases}-4, & x>0 \\ 4, & x<0\end{cases}
$$

Thus

$$
\left|f^{\prime}\left(-\frac{11}{65}\right) f^{\prime}\left(\frac{21}{65}\right) f^{\prime}\left(-\frac{19}{65}\right)\right|=64>1
$$

and the 3 -cycle is unstable.
3.6.2. Convert $P_{n+1}=r P_{n}\left(1-P_{n}^{2} / C^{2}\right)$ into a one-parameter family.

Let $x_{n}=P_{n} / C$. Then

$$
C x_{n+1}=r C x_{n}\left(1-x_{n}^{2}\right) \Rightarrow x_{n+1}=r x_{n}\left(1-x_{n}^{2}\right)
$$

3.6.8. Find all positive fixed points of $f_{c}(x)=\frac{c x^{2}}{x^{2}+1}$ and their intervals of existence for $c>0$.

$$
\begin{gathered}
f_{c}(x)=x \Rightarrow \frac{c x^{2}}{x^{2}+1}=x \Rightarrow c x^{2}=x^{3}+x \Rightarrow x^{3}-c x^{2}+x=0 \\
\Rightarrow x\left(x^{2}-c x+1\right)=0 \\
\Rightarrow x=0, x=\frac{c \pm \sqrt{c^{2}-4}}{2}
\end{gathered}
$$

Because $c>0, \frac{c+\sqrt{c^{2}-4}}{2}>0$. Furthermore, $c^{2}>c^{2}-4$ implies $c>\sqrt{c^{2}-4}$. So $\frac{c-\sqrt{c^{2}-4}}{2}>0$ as well. But these real solution exist only if $c^{2}-4 \geq 0$ or equivalently, $c \geq 2$ (note that $c>0$). Therefore the interval of existence is $[2, \infty)$.
3.6.12. Find the interval of stability of the fixed point 0 for $r>0$ of $f_{r}(x)=r x^{2}(1-x)$.

$$
f_{r}^{\prime}(x)=2 r x-3 r x^{2} \Rightarrow\left|f_{r}^{\prime}(0)\right|=0<1
$$

Therefore the fixed point 0 is always stable, so the interval of stability is $(0, \infty)$.
3.6.22. Find the 2-cycles and their intervals of existence and stability for $a>0$ of $f_{a}(x)=-a x^{3}$.

$$
f_{a}(x)=x \Rightarrow-a x^{3}=x \Rightarrow x\left(-a x^{2}-1\right)=0 \Rightarrow x=0
$$

(Note that $-a x^{2}-1<0$.) So $x=0$ is the unique fixed point of $f_{a}(x)$.

$$
\begin{gathered}
f_{a}\left(f_{a}(x)\right)=f_{a}\left(-a x^{3}\right)=-a\left(-a x^{3}\right)^{3}=a^{4} x^{9} \\
f_{a}\left(f_{a}(x)\right)=x \Rightarrow a^{4} x^{9}=x \Rightarrow x\left(a^{4} x^{8}-1\right)=0 \Rightarrow x\left(a x^{2}-1\right)\left(a x^{2}+1\right)\left(a^{2} x^{4}+1\right)=0 \\
\Rightarrow x=0, x=\frac{1}{\sqrt{a}}, x=-\frac{1}{\sqrt{a}}
\end{gathered}
$$

Since $f_{a}\left(\frac{1}{\sqrt{a}}\right)=-\frac{1}{\sqrt{a}}$ and $f_{a}\left(-\frac{1}{\sqrt{a}}\right)=\frac{1}{\sqrt{a}},\left\{\frac{1}{\sqrt{a}},-\frac{1}{\sqrt{a}}\right\}$ is a 2-cycle. It exists for every $a>0$. Therefore the interval of existence is $(0, \infty)$.

$$
\begin{gathered}
f_{a}^{\prime}(x)=-3 a x^{2} \\
\left|f_{a}^{\prime}\left(\frac{1}{\sqrt{a}}\right) f_{a}^{\prime}\left(-\frac{1}{\sqrt{a}}\right)\right|=9>1
\end{gathered}
$$

Therefore the 2-cycle is always unstable and the interval of stability is an emptyset.
3.6.28. For the threshold population model $P_{n+1}=\frac{r P_{n}^{2}}{C}\left(1-P_{n} / C\right)$, when r is small the population will become extinct regardless of the initial population size P_{0}. When r is larger, although small initial populations still lead to extinction (because of the threshold), there is a positive equilibrium population.
(a) Find the smallest growth rate r for which a positive equilibrium population exists.
Set $x_{n}=P_{n} / C$ or equivalently, $P_{n}=C x_{n}$. Then

$$
C x_{n+1}=r \frac{\left(C x_{n}\right)^{2}}{C}\left(1-x_{n}\right) \Rightarrow x_{n+1}=r x_{n}^{2}\left(1-x_{n}\right)
$$

Let $f_{r}(x)=r x^{2}(1-x)=r x^{2}-r x^{3}$.

$$
\begin{gathered}
f_{r}(x)=x \Rightarrow r x^{2}-r x^{3}=x \Rightarrow r x^{3}-r x^{2}+x=0 \Rightarrow x\left(r x^{2}-r x+1\right)=0 \\
\Rightarrow x=0, x=\frac{r \pm \sqrt{r^{2}-4 r}}{2 r}
\end{gathered}
$$

Note that $r^{2}>r^{2}-4 r$, so $r>\sqrt{r^{2}-4 r}$ and two zeros are all positive real numbers if $r^{2}-4 r \geq 0$ or equivalently $r \geq 4$. Therefore the smallest r with positive fixed population is $r=4$.
(b) Find the interval of r-values for which there exists a stable positive equilibrium population.

$$
f_{r}^{\prime}(x)=2 r x-3 r x^{2}=3\left(r x-r x^{2}\right)-r x
$$

Note that for two positive fixed points, $r x-r x^{2}=1$ because they are zeros of $r x^{2}-r x+1=0$.

$$
\begin{gathered}
f_{r}^{\prime}\left(\frac{r+\sqrt{r^{2}-4 r}}{r}\right)=3-r-\sqrt{r^{2}-4 r} \\
\left|f_{r}^{\prime}\left(\frac{r+\sqrt{r^{2}-4 r}}{r}\right)\right|<1 \Leftrightarrow-1<3-r-\sqrt{r^{2}-4 r}<1 \\
\Leftrightarrow 2<r+\sqrt{r^{2}-4 r}<4
\end{gathered}
$$

But because $r \geq 4$, it is impossible. In other words, the fixed point $\frac{r+\sqrt{r^{2}-4 r}}{r}$ is never stable.
On the other hand,

$$
\begin{gathered}
f_{r}^{\prime}\left(\frac{r-\sqrt{r^{2}-4 r}}{r}\right)=3-r+\sqrt{r^{2}-4 r} \\
\left|f_{r}^{\prime}\left(\frac{r-\sqrt{r^{2}-4 r}}{r}\right)\right|<1 \Leftrightarrow-1<3-r+\sqrt{r^{2}-4 r}<1 \\
\Leftrightarrow 2<r-\sqrt{r^{2}-4 r}<4 .
\end{gathered}
$$

Note that $(r-2)^{2}=r^{2}-4 r+4>r^{2}-4 r$, so $r-2>\sqrt{r^{2}-4 r}$ and $r-$ $\sqrt{r^{2}-4 r}>2$. And if $r>4$,

$$
(r-4)^{4}<r(r-4)=r^{2}-4 r \Rightarrow r-4<\sqrt{r^{2}-4 r} \Rightarrow r-\sqrt{r^{2}-4 r}<4
$$

Therefore the interval of stability (of the fixed point $\frac{r-\sqrt{r^{2}-4 r}}{r}$ is $(4, \infty)$.
3.7.2. Let $f_{r}(x)=\frac{r x}{x+5}$.
(a) Find the interval of stability of the fixed point 0 ;

$$
\begin{gathered}
f_{r}^{\prime}(x)=\frac{r(x+5)-r x}{(x+5)^{2}}=\frac{5 r}{(x+5)^{2}} \\
f_{r}^{\prime}(0)=\frac{r}{5} \\
\left|f_{r}^{\prime}(0)\right|=\left|\frac{r}{5}\right|<\Leftrightarrow r<5
\end{gathered}
$$

The interval of stability is $(0,5)$.
(b) Find the positive fixed point $p(r)$ and its intervals of existence and stability;

$$
\begin{gathered}
f_{r}(x)=x \Rightarrow \frac{r x}{x+5}=x \Rightarrow r x=x(x+5) \\
\Rightarrow x^{2}+5 x-r x=0 \Rightarrow x(x+5-r)=0 \Rightarrow x=0, x=r-5
\end{gathered}
$$

The nonzero fixed point $p(r)=r-5$ is positive when $r>5$. So the interval of existence is $(5, \infty)$.

$$
\begin{aligned}
& f_{r}^{\prime}(r-5)=\frac{5 r}{(r-5+5)^{2}}=\frac{5}{r} \\
& \left|f_{r}^{\prime}(r-5)\right|=\frac{5}{r}<1 \Leftrightarrow r>5
\end{aligned}
$$

Therefore the interval of stability is $(5, \infty)$.
(c) Show that $p(r)$ bifurcates from 0 at some parameter value $r=r_{0}$.

When $r=5, p(5)=5-5=0$. At $r=5$, the stable fixed point 0 becomes unstable and a new positive stable fixed point $p(r)$ bifurcates from 0 .
3.7.12. Let $f_{a}(x)=0.25-a x^{2}$.
(a) Find the non-negative fixed point $p(a)$ and its intervals of existence and stability;

$$
\begin{gathered}
f_{a}(x)=x \Rightarrow 0.25-a x^{2}=x \Rightarrow a x^{2}+x-\frac{1}{4}=0 \\
\Rightarrow x=\frac{-1 \pm \sqrt{1+a}}{2 a}
\end{gathered}
$$

The positive solution is $p(a)=\frac{-1+\sqrt{1+a}}{2 a}$ and it exists for every $a>0$. Therefore the interval of existence is $(0, \infty)$.

$$
f_{a}^{\prime}(x)=-2 a x \Rightarrow f_{a}^{\prime}\left(\frac{-1+\sqrt{1+a}}{2 a}\right)=1-\sqrt{1+a}
$$

So $\left|f_{a}^{\prime}(p(a))\right|=|1-\sqrt{1+a}|<1$ only if $a<3$. Thus the interval of stability is $(0,3)$.
(b) Find the 2-cycle $p_{1}(a), p_{2}(a)$ and its interval of existence and stability;

$$
\begin{gathered}
f_{a}\left(f_{a}(x)\right)=f_{a}\left(0.25-a x^{2}\right)=0.25-a\left(0.25-a x^{2}\right)^{2}=\frac{1}{4}-a\left(\frac{1}{4}-a x^{2}\right)^{2} \\
=\frac{1}{4}-\frac{a}{16}+\frac{a^{2}}{2} x^{2}-a^{3} x^{4} \\
f_{a}\left(f_{a}(x)\right)=x \Rightarrow a^{3} x^{4}-\frac{a^{2}}{2} x^{2}+x+\frac{a-4}{16}=0
\end{gathered}
$$

Note that $a x^{2}+x-\frac{1}{4}$ is a factor of $a^{3} x^{4}-\frac{a^{2}}{2} x^{2}+x+\frac{a-4}{16}$. Indeed,

$$
a^{3} x^{4}-\frac{a^{2}}{2} x^{2}+x+\frac{a-4}{16}=\left(a x^{2}+x-\frac{1}{4}\right)\left(a^{2} x^{2}-a x+\frac{4-a}{4}\right) .
$$

Now $a^{2} x^{2}-a x+\frac{4-a}{4}=0$ has zeros

$$
\begin{aligned}
x & =\frac{a \pm \sqrt{a^{3}-3 a^{2}}}{2 a^{2}}=\frac{1 \pm \sqrt{a-3}}{2 a} . \\
p_{1}(a) & =\frac{1+\sqrt{a-3}}{2 a}, \quad p_{2}(a)=\frac{1-\sqrt{a-3}}{2 a}
\end{aligned}
$$

So they are two positive real roots when $a>3$ and $1-\sqrt{a-3}>0$, or equivalently, $a<4$. Therefore the interval of existence (of a positive 2-cycle) is $(3,4)$. Of course, the interval of existence (of a 2 -cycle) is $(3, \infty)$.

$$
\left|f_{a}^{\prime}\left(\frac{1+\sqrt{a-3}}{2 a}\right) f_{a}^{\prime}\left(\frac{1-\sqrt{a-3}}{2 a}\right)\right|
$$

$$
=|(1+\sqrt{a-3})(1-\sqrt{a-3})|=|1-(a-3)|=|4-a|
$$

So it is less than one if $3<a<5$. Therefore the interval of stability (of a 2 -cycle) is $(3,5)$, and that of a positive 2 -cycle is $(3,4)$.
(c) Show that the 2-cycle bifurcates from $p(a)$ at some parameter value $a=a_{0}$. When $a=3, p(3)=p_{1}(3)=p_{2}(3)=\frac{1}{6}$. At $a=3$, the stable fixed point $p(3)$ becomes unstable and a stable positive 2-cycle $p_{1}(a), p_{2}(a)$ bifurcates from $p(a)$.
3.7.16. Sketch the graph of $p(a), p_{1}(a), p_{2}(a)$ from Exercise 12 together.

