
MATH 1700 Homework Han-Bom Moon

Homework 9 Solution
Section 3.5 ∼ 3.7.

3.5.8. Find all solutions of f(f(x)) = x for f(x) = −x3/2 and determine which are
fixed points of f(x) and which are 2-cycles.

f(f(x)) = f(−x3

2
) = −

(
−x3

2

)3
2

=
x9

16

f(f(x)) = x⇒ x9

16
− x = 0⇒ x9 − 16x = 0

⇒ x(x8 − 16) = 0⇒ x(x4 − 4)(x4 + 4) = 0⇒ x(x2 − 2)(x2 + 2)(x4 + 4) = 0

⇒ x(x−
√
2)(x+

√
2)(x2 + 2)(x4 + 4) = 0⇒ x = 0,

√
2,−
√
2

f(0) = 0, f(
√
2) = −

√
2, f(−

√
2) =

√
2

Therefore 0 is a fixed point of f(x), and {
√
2,−
√
2} is a 2-cycle.

3.5.10. Find all fixed points of f(x) = −x2 + 2x + 2 and then use them to help find all
points of period 2.

f(x) = x⇒ −x2 + 2x+ 2 = x⇒ x2 − x− 2 = 0

⇒ x =
1±
√
9

2

f(f(x)) = f(−x2 + 2x+ 2) = −(−x2 + 2x+ 2)2 + 2(−x2 + 2x+ 2) + 2

= −x4 + 4x3 − 2x2 − 4x+ 2

f(f(x)) = x⇒ −x4 + 4x3 − 2x2 − 4x+ 2 = x⇒ x4 − 4x3 + 2x2 + 5x− 2 = 0

Then x2 − x− 2 is a factor of x4 − 4x3 + 2x2 + 5x− 2, and

x4 − 4x3 + 2x2 + 5x− 2 = (x2 − x− 2)(x2 − 3x+ 1)

x2 − 3x+ 1 = 0⇒ x =
3±
√
5

2

One can check that f(
3 +
√
5

2
) =

3−
√
5

2
and f(

3−
√
5

2
) =

3 +
√
5

2
. Therefore

{3 +
√
5

2
,
3−
√
5

2
}

is a 2-cycle.
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3.5.18. Given that a = 1 is one point of a 2-cycle of f(x) = 2− 2x, find the other point b
and determine the stability of the cycle.

f(1) = 2− 21 = 0, f(0) = 2− 20 = 1

So b = 1.

3.5.22. The equation Pn+1 =
1

Pn
+

Pn

2
− 1 is a price model.

(a) Find the two equilibrium points and determine their stability.

f(x) =
1

x
+

x

2
− 1

x = f(x)⇒ x =
1

x
+

x

2
− 1⇒ x

2
− 1

x
+ 1 = 0⇒ x2 + 2x− 2 = 0

⇒ x =
−2±

√
12

2
= −1±

√
3

f ′(x) = − 1

x2
+

1

2

f ′(−1 +
√
3) = − 1

(−1 +
√
3)2

+
1

2
≈ −1.3660 < −1

So −1 +
√
3 is an unstable equilibrium point.

|f ′(−1−
√
3)| = | − 1

(−1−
√
3)2

+
1

2
| ≈ 0.3660 < 1

Therefore −1−
√
3 is a stable fixed point.

(b) Use the results from part (a) to help find the points of the 2-cycle, and then
determine the stability of that cycle.

f(x) =
1

x
+

x

2
− 1 =

x2 − 2x+ 2

2x

f(f(x)) = f(
x2 − 2x+ 2

2x
) =

2x

x2 − 2x+ 2
+

x2 − 2x+ 2

4x
− 1

=
x4 − 8x3 + 24x2 − 16x+ 4

4x3 − 8x2 + 8x

f(f(x)) = x⇒ x4 − 8x3 + 24x2 − 16x+ 4

4x3 − 8x2 + 8x
= x

⇒ x4 − 8x3 + 24x2 − 16x+ 4 = 4x4 − 8x3 + 8x2 ⇒ 3x4 − 16x2 + 16x− 4 = 0

Note that x2 + 2x− 2 is a factor of 3x4 − 16x2 + 16x− 4. Indeed,

3x4 − 16x2 + 16x− 4 = (x2 + 2x− 2)(3x2 − 6x+ 2).
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3x2 − 6x+ 2 = 0⇒ x =
6±
√
12

6
=

3±
√
3

3

|f ′(
3 +
√
3

3
)f ′(

3−
√
3

3
)| = 0.5 < 1

Therefore the 2-cycle

{3 +
√
3

3
,
3−
√
3

3
}

is stable.

3.5.30. (a) Suppose f4(p) = p for some point p and some function f(x). What are the
possible periods that p might have?

Because the period is the smallest m so that fm(p) = p, the period of p is
at most 4. But 3 is impossible, because if f3(p) = p, then p = f4(p) =

f(f3(p)) = f(p) and p is a fixed point (so the period is 1). Therefore the
possible periods are 1, 2, and 4.

(b) Suppose f12(p) = p for some point p and some function f(x). What are the
possible periods that p might have?

By the same reason, the period of p is at most 12. We claim that the period of
p must be a divisor of 12, so 1, 2, 3, 4, 6, and 12 are the only possible cases.
Indeed, if the period m of p is less than 12, then fm(p) = p. If we divide 12
by m, then 12 = qm+ r for some q ≥ 1 and the remainder m > r ≥ 0. Now
p = f12(p) = f r(f qm(p)) = f r(p), so the period of p is at most r unless r = 0.
The first case is impossible because the period m is larger then r. Therefore
r = 0 and m is a divisor of 12.

3.5.32. For f(x) = 1 − 4|x|, p1 = −11/65 is a point of an m-cycle. Find all other points
of that cycle, and determine its period and stability.

f(−11

65
) = 1− 4| − 11

65
| = 21

65

f(
21

65
) = 1− 4|21

65
| = −19

65

f(−19

65
) = 1− 4|19

65
| = −11

65

Therefore p = −11/65 has period 3. Note that

f(x) =

{
1− 4x, x > 0

1 + 4x, x < 0.

So

f ′(x) =

{
−4, x > 0

4, x < 0
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Thus
|f ′(−11

65
)f ′(

21

65
)f ′(−19

65
)| = 64 > 1

and the 3-cycle is unstable.

3.6.2. Convert Pn+1 = rPn(1− P 2
n/C

2) into a one-parameter family.

Let xn = Pn/C. Then

Cxn+1 = rCxn(1− x2n)⇒ xn+1 = rxn(1− x2n)

3.6.8. Find all positive fixed points of fc(x) =
cx2

x2 + 1
and their intervals of existence

for c > 0.

fc(x) = x⇒ cx2

x2 + 1
= x⇒ cx2 = x3 + x⇒ x3 − cx2 + x = 0

⇒ x(x2 − cx+ 1) = 0

⇒ x = 0, x =
c±
√
c2 − 4

2

Because c > 0,
c+
√
c2 − 4

2
> 0. Furthermore, c2 > c2 − 4 implies c >

√
c2 − 4.

So
c−
√
c2 − 4

2
> 0 as well. But these real solution exist only if c2 − 4 ≥ 0 or

equivalently, c ≥ 2 (note that c > 0). Therefore the interval of existence is [2,∞).

3.6.12. Find the interval of stability of the fixed point 0 for r > 0 of fr(x) = rx2(1− x).

f ′
r(x) = 2rx− 3rx2 ⇒ |f ′

r(0)| = 0 < 1.

Therefore the fixed point 0 is always stable, so the interval of stability is (0,∞).

3.6.22. Find the 2-cycles and their intervals of existence and stability for a > 0 of
fa(x) = −ax3.

fa(x) = x⇒ −ax3 = x⇒ x(−ax2 − 1) = 0⇒ x = 0

(Note that −ax2 − 1 < 0.) So x = 0 is the unique fixed point of fa(x).

fa(fa(x)) = fa(−ax3) = −a(−ax3)3 = a4x9

fa(fa(x)) = x⇒ a4x9 = x⇒ x(a4x8−1) = 0⇒ x(ax2−1)(ax2+1)(a2x4+1) = 0

⇒ x = 0, x =
1√
a
, x = − 1√

a
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Since fa(
1√
a
) = − 1√

a
and fa(−

1√
a
) =

1√
a

, { 1√
a
,− 1√

a
} is a 2-cycle. It exists for

every a > 0. Therefore the interval of existence is (0,∞).

f ′
a(x) = −3ax2

|f ′
a(

1√
a
)f ′

a(−
1√
a
)| = 9 > 1

Therefore the 2-cycle is always unstable and the interval of stability is an empty-
set.

3.6.28. For the threshold population model Pn+1 =
rP 2

n

C
(1−Pn/C), when r is small the

population will become extinct regardless of the initial population size P0. When
r is larger, although small initial populations still lead to extinction (because of
the threshold), there is a positive equilibrium population.

(a) Find the smallest growth rate r for which a positive equilibrium population
exists.

Set xn = Pn/C or equivalently, Pn = Cxn. Then

Cxn+1 = r
(Cxn)

2

C
(1− xn)⇒ xn+1 = rx2n(1− xn)

Let fr(x) = rx2(1− x) = rx2 − rx3.

fr(x) = x⇒ rx2 − rx3 = x⇒ rx3 − rx2 + x = 0⇒ x(rx2 − rx+ 1) = 0

⇒ x = 0, x =
r ±
√
r2 − 4r

2r

Note that r2 > r2 − 4r, so r >
√
r2 − 4r and two zeros are all positive real

numbers if r2 − 4r ≥ 0 or equivalently r ≥ 4. Therefore the smallest r with
positive fixed population is r = 4.

(b) Find the interval of r-values for which there exists a stable positive equilib-
rium population.

f ′
r(x) = 2rx− 3rx2 = 3(rx− rx2)− rx

Note that for two positive fixed points, rx − rx2 = 1 because they are zeros
of rx2 − rx+ 1 = 0.

f ′
r(
r +
√
r2 − 4r

r
) = 3− r −

√
r2 − 4r

|f ′
r(
r +
√
r2 − 4r

r
)| < 1⇔ −1 < 3− r −

√
r2 − 4r < 1

⇔ 2 < r +
√

r2 − 4r < 4
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But because r ≥ 4, it is impossible. In other words, the fixed point
r +
√
r2 − 4r

r
is never stable.

On the other hand,

f ′
r(
r −
√
r2 − 4r

r
) = 3− r +

√
r2 − 4r

|f ′
r(
r −
√
r2 − 4r

r
)| < 1⇔ −1 < 3− r +

√
r2 − 4r < 1

⇔ 2 < r −
√
r2 − 4r < 4.

Note that (r − 2)2 = r2 − 4r + 4 > r2 − 4r, so r − 2 >
√
r2 − 4r and r −√

r2 − 4r > 2. And if r > 4,

(r − 4)4 < r(r − 4) = r2 − 4r ⇒ r − 4 <
√

r2 − 4r ⇒ r −
√
r2 − 4r < 4.

Therefore the interval of stability (of the fixed point
r −
√
r2 − 4r

r
is (4,∞).

3.7.2. Let fr(x) =
rx

x+ 5
.

(a) Find the interval of stability of the fixed point 0;

f ′
r(x) =

r(x+ 5)− rx

(x+ 5)2
=

5r

(x+ 5)2

f ′
r(0) =

r

5

|f ′
r(0)| = |

r

5
| <⇔ r < 5

The interval of stability is (0, 5).

(b) Find the positive fixed point p(r) and its intervals of existence and stability;

fr(x) = x⇒ rx

x+ 5
= x⇒ rx = x(x+ 5)

⇒ x2 + 5x− rx = 0⇒ x(x+ 5− r) = 0⇒ x = 0, x = r − 5

The nonzero fixed point p(r) = r − 5 is positive when r > 5. So the interval
of existence is (5,∞).

f ′
r(r − 5) =

5r

(r − 5 + 5)2
=

5

r

|f ′
r(r − 5)| = 5

r
< 1⇔ r > 5

Therefore the interval of stability is (5,∞).
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(c) Show that p(r) bifurcates from 0 at some parameter value r = r0.
When r = 5, p(5) = 5 − 5 = 0. At r = 5, the stable fixed point 0 becomes
unstable and a new positive stable fixed point p(r) bifurcates from 0.

3.7.12. Let fa(x) = 0.25− ax2.

(a) Find the non-negative fixed point p(a) and its intervals of existence and sta-
bility;

fa(x) = x⇒ 0.25− ax2 = x⇒ ax2 + x− 1

4
= 0

⇒ x =
−1±

√
1 + a

2a

The positive solution is p(a) =
−1 +

√
1 + a

2a
and it exists for every a > 0.

Therefore the interval of existence is (0,∞).

f ′
a(x) = −2ax⇒ f ′

a(
−1 +

√
1 + a

2a
) = 1−

√
1 + a

So |f ′
a(p(a))| = |1 −

√
1 + a| < 1 only if a < 3. Thus the interval of stability

is (0, 3).

(b) Find the 2-cycle p1(a), p2(a) and its interval of existence and stability;

fa(fa(x)) = fa(0.25− ax2) = 0.25− a(0.25− ax2)2 =
1

4
− a(

1

4
− ax2)2

=
1

4
− a

16
+

a2

2
x2 − a3x4

fa(fa(x)) = x⇒ a3x4 − a2

2
x2 + x+

a− 4

16
= 0

Note that ax2 + x− 1

4
is a factor of a3x4 − a2

2
x2 + x+

a− 4

16
. Indeed,

a3x4 − a2

2
x2 + x+

a− 4

16
= (ax2 + x− 1

4
)(a2x2 − ax+

4− a

4
).

Now a2x2 − ax+
4− a

4
= 0 has zeros

x =
a±
√
a3 − 3a2

2a2
=

1±
√
a− 3

2a
.

p1(a) =
1 +
√
a− 3

2a
, p2(a) =

1−
√
a− 3

2a

So they are two positive real roots when a > 3 and 1 −
√
a− 3 > 0, or

equivalently, a < 4. Therefore the interval of existence (of a positive 2-cycle)
is (3, 4). Of course, the interval of existence (of a 2-cycle) is (3,∞).

|f ′
a(
1 +
√
a− 3

2a
)f ′

a(
1−
√
a− 3

2a
)|
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= |(1 +
√
a− 3)(1−

√
a− 3)| = |1− (a− 3)| = |4− a|

So it is less than one if 3 < a < 5. Therefore the interval of stability (of a
2-cycle) is (3, 5), and that of a positive 2-cycle is (3, 4).

(c) Show that the 2-cycle bifurcates from p(a) at some parameter value a = a0.

When a = 3, p(3) = p1(3) = p2(3) =
1

6
. At a = 3, the stable fixed point p(3)

becomes unstable and a stable positive 2-cycle p1(a), p2(a) bifurcates from
p(a).

3.7.16. Sketch the graph of p(a), p1(a), p2(a) from Exercise 12 together.
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