MATH 1700 MIDTERM EXAM 2 SOLUTION

SPRING 2015 - MOON

(1) Suppose that $P_{n+1}=5+\frac{6}{P_{n}}$ is a price model.
(a) (4 pts) Find all positive fixed prices.

$$
\begin{gathered}
x=5+\frac{6}{x} \Rightarrow x^{2}=5 x+6 \Rightarrow x^{2}-5 x-6=0 \\
\Rightarrow(x-6)(x+1)=0 \Rightarrow x=-1,6
\end{gathered}
$$

Therefore there is only one positive fixed point, $x=6$.

- Setting up the equation $x=5+\frac{6}{x}$ to find fixed points: 1 pt .
- Getting the answer 6 with appropriate steps: 4 pts.
(b) (3 pts) Determine their stability. No cobwebbing is allowed.

$$
\begin{gathered}
f(x)=5+\frac{6}{x} \Rightarrow f^{\prime}(x)=-\frac{6}{x^{2}} \\
f^{\prime}(6)=-\frac{6}{6^{2}}=-\frac{1}{6}
\end{gathered}
$$

Because $\left|f^{\prime}(6)\right|=\left|-\frac{1}{6}\right|<1,6$ is locally stable.

- If the computation of $f^{\prime}(x)$ is incorrect, 1 pt .
(c) (3 pts) Determine whether there is an oscillation around them or not. No cobwebbing is allowed.

$$
f^{\prime}(6)=-\frac{1}{6}<0
$$

So there is an oscillation around 6.
(2) The following graph is a graph of $y=f(x)$ and $y=x$.

(a) (3 pts) Indicate all fixed points on the graph.

There are two fixed points (0 and $p \approx 0.4$).
(b) (4 pts) Sketch a cobweb graph starting from $x=0.75$.
(c) (3 pts) Write what we may guess from (b) about the stability of a fixed point.

We may guess that the positive fixed point p is locally stable.
(3) (7 pts) State the Mean Value Theorem.

Suppose that $f(x)$ is continuous on $[a, b]$ and is differentiable on (a, b). Then there is c on $[a, b]$ such that

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)
$$

- Not mentioning the differentiability on $(a, b):-2$ pts.
- Not mentioning $a \leq c \leq b$: -2 pts.
- Stating $\frac{f(b)-f(a)}{b-a}=f^{\prime}(c): 3$ pts.
(4) Let $g(x)=x^{2}-2 x$.
(a) (7 pts) Find a 2-cycle of $g(x)$.

$$
g(x)=x \Rightarrow x^{2}-2 x=x \Rightarrow x^{2}-3 x=x(x-3)=0 \Rightarrow x=0,3
$$

So there are two fixed points $x=0$ and $x=3$.

$$
\begin{gathered}
g(g(x))=x \Rightarrow g\left(x^{2}-2 x\right)=x \Rightarrow\left(x^{2}-2 x\right)^{2}-2\left(x^{2}-2 x\right)=x \\
\Rightarrow x^{4}-4 x^{3}+2 x^{2}+3 x=0
\end{gathered}
$$

Note that $x^{2}-3 x$ must be a divisor of the degree 4 polynomial. By polynomial factorization,

$$
x^{4}-4 x^{3}+2 x^{2}+3 x=\left(x^{2}-3 x\right)\left(x^{2}-x-1\right)=x(x-3)\left(x^{2}-x-1\right)
$$

and

$$
x=\frac{1 \pm \sqrt{(-1)^{2}-4 \cdot 1 \cdot(-1)}}{2}=\frac{1 \pm \sqrt{5}}{2}
$$

are two additional zeros. Therefore $\left\{\frac{1+\sqrt{5}}{2}, \frac{1-\sqrt{5}}{2}\right\}$ is a 2 -cycle.

- Finding all fixed points $x=0,3: 3$ pts.
- Finding the 2-cycle $\left\{\frac{1+\sqrt{5}}{2}, \frac{1-\sqrt{5}}{2}\right\}: 7$ pts.
(b) (4 pts) Determine the stability of the 2-cycle.

$$
\begin{gathered}
g^{\prime}(x)=2 x-2 \\
\left|g^{\prime}\left(\frac{1+\sqrt{5}}{2}\right)\right|\left|g^{\prime}\left(\frac{1-\sqrt{5}}{2}\right)\right|=\left|\left(2 \cdot \frac{1+\sqrt{5}}{2}-2\right)\left(2 \cdot \frac{1-\sqrt{5}}{2}-2\right)\right| \\
=|(-1+\sqrt{5}) \cdot(-1-\sqrt{5})|=4>1
\end{gathered}
$$

Therefore this 2-cycle is unstable.

- Stating the fact that $\left|g^{\prime}\left(p_{1}\right) g^{\prime}\left(p_{2}\right)\right|<\Leftrightarrow$ stable: 1 pt .
(5) Consider a one parameter family $f_{r}(x)=r x\left(3-x^{2}\right)$ of functions with $r>0$.
(a) (3 pts) Find the interval of stability of the fixed point 0.

$$
\begin{gathered}
f_{r}(x)=3 r x-r x^{3} \Rightarrow f_{r}^{\prime}(x)=3 r-3 r x^{2}=3 r\left(1-x^{2}\right) \Rightarrow f_{r}^{\prime}(0)=3 r \\
\left|f_{r}^{\prime}(0)\right|=3 r<1 \Leftrightarrow r<\frac{1}{3}
\end{gathered}
$$

Therefore the interval of stability is $\left(0, \frac{1}{3}\right)$.
(b) (5 pts) Find a positive fixed point $p(r)$ and its interval of existence.

$$
\begin{aligned}
& f_{r}(x)=x \Rightarrow r x\left(3-x^{2}\right)=x \Rightarrow r\left(3-x^{2}\right)=1 \\
& \quad \Rightarrow r x^{2}+1-3 r=0 \Rightarrow x= \pm \sqrt{\frac{3 r-1}{r}}
\end{aligned}
$$

Therefore the positive fixed point is $p(r)=\sqrt{\frac{3 r-1}{r}}$. Note that this is a positive real number only if $3 r-1>0$, or equivalently, $r>\frac{1}{3}$. Thus the interval of existence is $\left(\frac{1}{3}, \infty\right)$.

- Finding the positive fixed point $p(r)=\sqrt{\frac{3 r-1}{r}}: 3$ pts.
- Finding the interval of existence $\left(\frac{1}{3}, \infty\right): 5$ pts.
(c) (4 pts) Find the interval of stability of $p(r)$.

$$
\begin{gathered}
f_{r}^{\prime}(x)=3 r-3 r x^{2} \Rightarrow f_{r}^{\prime}(p(r))=f_{r}^{\prime}\left(\sqrt{\frac{3 r-1}{r}}\right)=3 r-3 r\left(\sqrt{\frac{3 r-1}{r}}\right)^{2} \\
=3 r-3(3 r-1)=3-6 r \\
\left|f_{r}^{\prime}(p(r))\right|<1 \Leftrightarrow|3-6 r|<1 \Leftrightarrow \frac{1}{3}<r<\frac{2}{3}
\end{gathered}
$$

So the interval of stability is $\left(\frac{1}{3}, \frac{2}{3}\right)$.
(d) (3 pts) Find the first bifurcation point r and describe what happens at the point.
When $r=\frac{1}{3}, p(r)=p\left(\frac{1}{3}\right)=0$. At $r=\frac{1}{3}$, a stable fixed point 0 becomes unstable, and another positive fixed point $p(r)$ bifurcates from 0 .

- Saying that $r=\frac{1}{3}$ is the first bifurcation point: 1 pt .
- Mentioning $p\left(\frac{1}{3}\right)=0: 1 \mathrm{pt}$.
- Explaining the stable fixed point 0 becomes unstable, and another stable fixed point $\frac{1}{3}$ bifurcates from 0: 1 pt .
(6) (7 pts) Choose one of two models below and explain how the model was derived. In other words, explain each term on the iterative model.
- Logistic population model $P_{n+1}=r P_{n}\left(1-\frac{P_{n}}{C}\right)$
- Contagious disease model $I_{n+1}=I_{n}-r I_{n}+s I_{n}\left(1-\frac{I_{n}}{N}\right)$

In the logistic population model, P_{n} is describing the population of a species in n-th period. r is the initial population growth rate, and C is the capacity of the environment. As the population grows, the growth ratio decreases because of the lack of foods, spaces, and hygiene. To apply this idea, we multiply $1-\frac{P_{n}}{C}$, which is a decreasing function in terms of P_{n}.

In the contagious disease model, I_{n} is describing the number of people who are infected by a disease in n-th period. The constant r is the rate that the infected people are recovered, and s is a positive constant proportional to the number of newly infected people, and N is the total population. The number of infected people in the next term I_{n+1} is described as I_{n} - recovered cases + new cases. The second term is $r I_{n}$, by the definition of r. The number of newly infected people is proportional to both the number of infected people $\left(I_{n}\right)$ and the number of healthy people ($N-I_{n}$) because an infection occurs when a healthy person and an infected person meet. Thus the number of new cases is $k I_{n}\left(N-I_{n}\right)$ for some $k>0$. If we set $s=k N$, then

$$
k I_{n}\left(N-I_{n}\right)=k N I_{n}\left(1-\frac{I_{n}}{N}\right)=s\left(1-\frac{I_{n}}{N}\right)
$$

- Stating the meaning of a model correctly: 2 pts.
- Explaining the constants r, C in logistic model or r, s, N in contagious disease model: 2 pts.
- Describing why the model is reasonable: 3 pts.

